- 相關(guān)推薦
高二導(dǎo)數(shù)教案(精選6篇)
作為一位無私奉獻(xiàn)的人民教師,時常會需要準(zhǔn)備好教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。教案應(yīng)該怎么寫才好呢?下面是小編精心整理的高二導(dǎo)數(shù)教案,希望對大家有所幫助。
高二導(dǎo)數(shù)教案 1
教學(xué)準(zhǔn)備
1. 教學(xué)目標(biāo)
(1)理解平均變化率的概念.
(2)了解瞬時速度、瞬時變化率、的概念.
(3)理解導(dǎo)數(shù)的概念
(4)會求函數(shù)在某點(diǎn)的導(dǎo)數(shù)或瞬時變化率.
2. 教學(xué)重點(diǎn)/難點(diǎn)
教學(xué)重點(diǎn):瞬時速度、瞬時變化率的概念及導(dǎo)數(shù)概念的形成和理解
教學(xué)難點(diǎn):會求簡單函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)
3. 教學(xué)用具
多媒體、板書
4. 標(biāo)簽
教學(xué)過程
一、創(chuàng)設(shè)情景、引入課題
【師】十七世紀(jì),在歐洲資本主義發(fā)展初期,由于工場的手工業(yè)向機(jī)器生產(chǎn)過渡,提高了生產(chǎn)力,促進(jìn)了科學(xué)技術(shù)的快速發(fā)展,其中突出的成就就是數(shù)學(xué)研究中取得了豐碩的成果―――微積分的產(chǎn)生。
【板演/PPT】
【師】人們發(fā)現(xiàn)在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關(guān)系
h(t)=-4.9t2+6.5t+10.
如何用運(yùn)動員在某些時間段內(nèi)的平均速度粗略地描述其運(yùn)動狀態(tài)?
【板演/PPT】
讓學(xué)生自由發(fā)言,教師不急于下結(jié)論,而是繼續(xù)引導(dǎo)學(xué)生:欲知結(jié)論怎樣,讓我們一起來觀察、研探。
【設(shè)計意圖】自然進(jìn)入課題內(nèi)容。
二、新知探究
[1]變化率問題
【合作探究】
探究1 氣球膨脹率
【師】很多人都吹過氣球,回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?
氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是
如果將半徑r表示為體積V的函數(shù),那么
【板演/PPT】
【活動】
【分析】
當(dāng)V從0增加到1時,氣球半徑增加了氣球的平均膨脹率為(1)當(dāng)V從1增加到2時,氣球半徑增加了氣球的平均膨脹率為
0.62>0.16
可以看出,隨著氣球體積逐漸增大,它的平均膨脹率逐漸變小了.
【思考】當(dāng)空氣容量從V1增加到V2時,氣球的平均膨脹率是多少?
解析:
探究2 高臺跳水
【師】在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關(guān)系 h(t)=-4.9t2+6.5t+10.
如何用運(yùn)動員在某些時間段內(nèi)的平均速度粗略地描述其運(yùn)動狀態(tài)?
(請計算)
【板演/PPT】
【生】學(xué)生舉手回答
【活動】學(xué)生覺得問題有價值,具有挑戰(zhàn)性,迫切想知道解決問題的方法。
【師】解析:h(t)=-4.9t2+6.5t+10
【設(shè)計意圖】兩個問題由易到難,讓學(xué)生一步一個臺階。為引入變化率的概念以及加深對變化率概念的理解服務(wù)。
探究3 計算運(yùn)動員在
這段時間里的平均速度,并思考下面的問題:
(1)運(yùn)動員在這段時間里是靜止的嗎?
(2)你認(rèn)為用平均速度描述運(yùn)動員的運(yùn)動狀態(tài)有什么問題嗎?
【板演/PPT】
【生】學(xué)生舉手回答
【師】在高臺跳水運(yùn)動中,平均速度不能準(zhǔn)確反映他在這段時間里運(yùn)動狀態(tài).
【活動】師生共同歸納出結(jié)論
平均變化率:
上述兩個問題中的函數(shù)關(guān)系用y=f(x)表示,那么問題中的變化率可用式子
我們把這個式子稱為函數(shù)y=f(x)從x1到x2的平均變化率.
習(xí)慣上用Δx=x2-x1,Δy=f(x2)-f(x1)
這里Δx看作是對于x1的一個“增量”可用x1+Δx代替x2
同樣Δy=f(x2)-f(x1),于是,平均變化率可以表示為:
【幾何意義】觀察函數(shù)f(x)的圖象,平均變化率的幾何意義是什么?
探究2 當(dāng)Δt趨近于0時,平均速度有什么變化趨勢?
從2s到(2+△t)s這段時間內(nèi)平均速度
當(dāng)△ t 趨近于0時, 即無論 t 從小于2的一邊, 還是從大于2的一邊趨近于2時, 平均速度都趨近與一個確定的值 –13.1.
從物理的角度看, 時間間隔 |△t |無限變小時, 平均速度就無限趨近于 t = 2時的'瞬時速度. 因此, 運(yùn)動員在 t = 2 時的瞬時速度是 –13.1 m/s.
為了表述方便,我們用xx表示“當(dāng)t =2, △t趨近于0時, 平均速度 趨近于確定值– 13.1”.
【瞬時速度】
我們用
表示 “當(dāng)t=2, Δt趨近于0時,平均速度趨于確定值-13.1”.
局部以勻速代替變速,以平均速度代替瞬時速度,然后通過取極限,從瞬時速度的近似值過渡到瞬時速度的精確值。那么,運(yùn)動員在某一時刻 的瞬時速度?
【設(shè)計意圖】讓學(xué)生體會由平均速度到瞬時速度的逼近思想:△t越小,V越接近于t=2秒時的瞬時速度。
探究3:
(1).運(yùn)動員在某一時刻 t0 的瞬時速度怎樣表示?
(2).函數(shù)f(x)在 x = x0處的瞬時變化率怎樣表示?
【總結(jié)提升】
由導(dǎo)數(shù)的定義可知, 求函數(shù) y = f (x)的導(dǎo)數(shù)的一般方法:
[3]例題講解
例題1 將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品, 需要對原油進(jìn)行冷卻和加熱. 如果第 x h時, 原油的溫度(單位: )為 y=f (x) = x2–7x+15 ( 0≤x≤8 ) . 計算第2h與第6h時, 原油溫度的瞬時變化率, 并說明它們的意義.
解: 在第2h和第6h時, 原油溫度的瞬時變化率就是
在第2h和第6h時, 原油溫度的瞬時變化率分別為–3和5. 它說明在第2h附近, 原油溫度大約以3 /h的速率下降; 在第6h附近,原油溫度大約以5 /h的速率上升.
高二導(dǎo)數(shù)教案 2
【學(xué)習(xí)要求】
1.能根據(jù)定義求函數(shù)y=c,y=x,y=x2,y=1x的導(dǎo)數(shù).
2.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)數(shù).
【學(xué)法指導(dǎo)】
1.利用導(dǎo)數(shù)的定義推導(dǎo)簡單函數(shù)的導(dǎo)數(shù)公 式,類推 一般多項式函數(shù)的導(dǎo)數(shù)公式,體會由特殊到一般的思想.通過定義求導(dǎo)數(shù)的過程,培 養(yǎng)歸納、探求規(guī)律的能力,提高學(xué)習(xí)興趣.
2.本節(jié)公式是下面幾節(jié)課的基礎(chǔ),記準(zhǔn)公式是學(xué)好本章內(nèi)容的關(guān)鍵.記公式時,要注意觀察公式之間的聯(lián)系,如公式6是公式5的特例,公式8是公式7的特例.公式5與公式7中l(wèi)n a的位置的.不同等.
1.幾個常用函數(shù)的導(dǎo)數(shù)
原函數(shù) 導(dǎo)函數(shù)
f(x)=c f ′(x)=
f(x)=x f′(x)=
f(x)=x2 f′(x)=
f(x)=1x
f′(x)=
f(x)=x
f′(x)=
2.基本初等函數(shù)的導(dǎo)數(shù)公式
原函數(shù) 導(dǎo)函數(shù)
f(x)=c f′(x)=
f(x)=xα(α∈Q*) f′(x)=
f(x)=sin x f′(x)=
f(x)=cos x f′(x)=
f(x)=ax f′(x)= (a>0)
f(x)=ex f′ (x)=
f(x)=logax
f′(x)= (a>0且a≠1)
f(x)=ln x f′(x)=
探究點(diǎn)一 幾個常用函數(shù)的導(dǎo)數(shù)
問題1 怎樣 利用定義求函數(shù)y=f(x)的導(dǎo)數(shù)?
問題2 利用 定義求下列常用函數(shù)的導(dǎo)數(shù):(1)y=c (2)y=x (3)y=x2 (4)y=1x (5)y=x
問題3 導(dǎo)數(shù)的幾何意義是曲線在某點(diǎn)處的切線的斜率.物理意義是運(yùn)動物體在某一時刻的瞬時速度.(1)函數(shù)y =f(x)=c(常數(shù))的導(dǎo)數(shù)的物理意義是什么?
(2)函數(shù)y=f(x)=x的導(dǎo)數(shù)的物理意義呢?
問題4 畫出函數(shù)y=1x的圖象.根據(jù)圖象,描述它的變化情況,并求出曲線在點(diǎn)(1,1)處的切線方程.
探究點(diǎn)二 基本初等函數(shù)的導(dǎo)數(shù)公式
問題1 利用導(dǎo)數(shù)的定義可以求函數(shù)的導(dǎo)函數(shù),但運(yùn)算比較繁雜,有些函數(shù)式子在中學(xué)階段無法變形,怎樣解決這個問題?
問題2 你能發(fā)現(xiàn)8個基本初等函數(shù)的導(dǎo)數(shù)公式之間的聯(lián)系嗎?
例1 求下列函數(shù)的導(dǎo)數(shù):(1)y=sinπ3;(2)y=5x;(3)y=1x3;(4)y=4x3; (5)y =log3x.
跟蹤1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x8;(2)y=(12)x;(3)y=xx;(4)y=
例2 判斷下列計算是否正確.
求y=cos x在x=π3處的導(dǎo)數(shù),過程如下:y′| = ′=-sin π3=-32.
跟蹤2 求函數(shù)f(x)=13x在x=1處的導(dǎo)數(shù).
探究點(diǎn)三 導(dǎo)數(shù)公式的綜合應(yīng)用
例3 已知直線x-2y-4=0與拋物線 y2=x相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),試在拋物線的弧 上求一點(diǎn)P,使△ABP的面積最大.
跟蹤3 點(diǎn)P是曲線y=ex上任意一點(diǎn),求點(diǎn)P到直線y=x的最小距離.
【達(dá)標(biāo)檢測】
1.給出下列結(jié)論:①若y=1x3,則y′=-3x4;②若y=3x,則y′=133x;
③若y=1x2,則y′=-2x-3;④若f(x)=3x,則f′(1)=3.其中正確的個數(shù)是 ( )
A.1 B.2 C.3 D.4
2.函數(shù)f(x)=x,則f′(3)等于 ( )
A.36 B.0 C.12x D.32
3.設(shè)正弦曲線y=sin x上一點(diǎn)P,以點(diǎn)P為切點(diǎn)的切線為直線l,則直線l的傾斜角的范圍是 ( )
A.[0,π4]∪[3π4,π) B.[0,π) C.[π4,3π4] D.[0,π4]∪[π2,3π4]
4.曲線y=ex在點(diǎn)(2,e2)處的切線與坐標(biāo)軸所圍三角形的面積為________.
高二導(dǎo)數(shù)教案 3
一、教學(xué)目標(biāo):
了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.
二、教學(xué)重點(diǎn):
利用導(dǎo)數(shù)判斷一個函數(shù)在其定義區(qū)間內(nèi)的單調(diào)性.
教學(xué)難點(diǎn):判斷復(fù)合函數(shù)的單調(diào)區(qū)間及應(yīng)用;利用導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性.
三、教學(xué)過程
(一)復(fù)習(xí)引入
1.增函數(shù)、減函數(shù)的定義
一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量x1,x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說f(x)在這個區(qū)間上是增函數(shù).當(dāng)x1<x2時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).
2.函數(shù)的單調(diào)性
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的)單調(diào)性,這一區(qū)間叫做y=f(x)的'單調(diào)區(qū)間.
在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的.
例1討論函數(shù)y=x2-4x+3的單調(diào)性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
=(x1-x2)(x1+x2-4)變形
當(dāng)x1<x2<2時,x1+x2-4<0,f(x1)>f(x2),定號
∴y=f(x)在(-∞, 2)單調(diào)遞減.判斷
當(dāng)2<x1<x2時,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)單調(diào)遞增.綜上所述y=f(x)在(-∞, 2)單調(diào)遞減,y=f(x)在(2,+∞)單調(diào)遞增。
能否利用導(dǎo)數(shù)的符號來判斷函數(shù)單調(diào)性?
高二導(dǎo)數(shù)教案 4
一、目標(biāo)
知識與技能:了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系 ; 能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間。
過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;
情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
二、重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間
教學(xué)難點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間
三、教學(xué)過程:
函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解.我們以導(dǎo)數(shù)為工具,對研究函數(shù)的增減及極值和最值帶來很大方便.
四、學(xué)情分析
我們的學(xué)生屬于平行分班,沒有實(shí)驗(yàn)班,學(xué)生已有的知識和實(shí)驗(yàn)水平有差距。需要教師指導(dǎo)并借助動畫給予直觀的認(rèn)識。
五、教學(xué)方法
發(fā)現(xiàn)式、啟發(fā)式
新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點(diǎn)撥→反思總結(jié)、當(dāng)堂檢測→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
六、課前準(zhǔn)備
1.學(xué)生的學(xué)習(xí)準(zhǔn)備:
2.教師的教學(xué)準(zhǔn)備:多媒體課件制作,課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案,課后延伸拓展學(xué)案。
七、課時安排:
1課時
八、教學(xué)過程
(一)預(yù)習(xí)檢查、總結(jié)疑惑
檢查落實(shí)了學(xué)生的預(yù)習(xí)情況并了解了學(xué)生的疑惑,使教學(xué)具有了針對性。
提問
1.判斷函數(shù)的單調(diào)性有哪些方法?
(引導(dǎo)學(xué)生回答“定義法”,“圖象法”。)
2.比如,要判斷 y=x2 的單調(diào)性,如
何進(jìn)行?(引導(dǎo)學(xué)生回顧分別用定義法、圖象法完成。)
3.還有沒有其它方法?如果遇到函數(shù):
y=x3-3x判斷單調(diào)性呢?(讓學(xué)生短時
間內(nèi)嘗試完成,結(jié)果發(fā)現(xiàn):用“定義法”,
作差后判斷差的符號麻煩;用“圖象法”,圖象很難畫出來。)
4.有沒有捷徑?(學(xué)生疑惑,由此引出課題)這就要用到咱們今天要學(xué)的導(dǎo)數(shù)法。
以問題形式復(fù)習(xí)相關(guān)的舊知識,同時引出新問題:三次函數(shù)判斷單調(diào)性,定義法、圖象法很不方便,有沒有捷徑?通過創(chuàng)設(shè)問題情境,使學(xué)生產(chǎn)生強(qiáng)烈的問題意識,積極主動地參與到學(xué)習(xí)中來。
(二)情景導(dǎo)入、展示目標(biāo)。
設(shè)計意圖:步步導(dǎo)入,吸引學(xué)生的注意力,明確學(xué)習(xí)目標(biāo)。
(探索函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系) 問:函數(shù)的單調(diào)性和導(dǎo)數(shù)有何關(guān)系呢?
教師仍以y=x2為例,借助幾何畫板動態(tài)演示,讓學(xué)生記錄結(jié)果在課前發(fā)的表格第二行中:
函數(shù)及圖象 單調(diào)性 切線斜率k的正負(fù) 導(dǎo)數(shù)的正負(fù)
問:有何發(fā)現(xiàn)?(學(xué)生回答)
問:這個結(jié)果是否具有一般性呢?
(三)合作探究、精講點(diǎn)撥。
我們來考察兩個一般性的例子:
(教師指導(dǎo)學(xué)生動手實(shí)驗(yàn):把準(zhǔn)備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動切線并記錄結(jié)果在上表第三、四行中。)
問:能否得出什么規(guī)律?
讓學(xué)生歸納總結(jié),教師簡單板書:
在某個區(qū)間(a,b)內(nèi),
若f (x)>0,則f(x)在(a,b)上是增函數(shù);
若f (x)<0,則在f(x)(a,b)上是減函數(shù)。
教師說明:
要正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。
1.這一部分是后面利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的理論依據(jù),重要性不言而喻,而學(xué)生又只學(xué)習(xí)了導(dǎo)數(shù)的意義和一些基本運(yùn)算,要想得到嚴(yán)格的證明是不現(xiàn)實(shí)的,因此,只要求學(xué)生能借助幾何直觀得出結(jié)論,這與新課標(biāo)中的要求是相吻合的.。
2.教師對具體例子進(jìn)行動態(tài)演示,學(xué)生對一般情況進(jìn)行實(shí)驗(yàn)驗(yàn)證。由觀察、猜想到歸納、總結(jié),讓學(xué)生體驗(yàn)知識的發(fā)現(xiàn)、發(fā)生過程,變灌注知識為學(xué)生主動獲取知識,從而使之成為課堂教學(xué)活動的主體。
3.得出結(jié)論后,教師強(qiáng)調(diào)正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。這一點(diǎn)將在例1的變式3具體體現(xiàn)。
4.考慮到本節(jié)課堂容量較大,這里沒有提到函數(shù)在個別點(diǎn)處導(dǎo)數(shù)為零不影響單調(diào)性的情況(如y=x3在x=0處),這一問題將在后續(xù)課程中給學(xué)生補(bǔ)充。
應(yīng)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
例1.求函數(shù)y=x2-3x的單調(diào)區(qū)間。
(引導(dǎo)學(xué)生得出解題思路:求導(dǎo) →
令f (x)>0,得函數(shù)單調(diào)遞增區(qū)間,令f (x)<0,得函數(shù)單調(diào)遞減區(qū)間 → 下結(jié)論)
變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。
(競賽活動:將全班同學(xué)分成兩大組指定分別用單調(diào)性的定義,和用求導(dǎo)數(shù)的方法解答,每組各推薦一位同學(xué)的答案進(jìn)行投影。)
求單調(diào)區(qū)間是導(dǎo)數(shù)的一個重要應(yīng)用,也是本節(jié)重點(diǎn),為此,設(shè)計了例1及三個變式:
設(shè)計例1可引導(dǎo)學(xué)生得出用導(dǎo)數(shù)法求單調(diào)區(qū)間的解題步驟
設(shè)計變式1及競賽活動可以激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們學(xué)會比較,并深刻體驗(yàn)導(dǎo)數(shù)法的優(yōu)越性。
鞏固提高
變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。
(學(xué)生上黑板解答)
變式3:求函數(shù) 的單調(diào)區(qū)間。
設(shè)計變式2且讓學(xué)生上黑板解答可以規(guī)范解題格式,同時使學(xué)生了解用導(dǎo)數(shù)法可以求更復(fù)雜的函數(shù)的單調(diào)區(qū)間。
設(shè)計變式3是可使學(xué)生體會考慮定義域的必要性
例1及三個變式,依次涉及二次,三次函數(shù),含指數(shù)的函數(shù)、反比例函數(shù),這樣一題多變,逐步深化,從而讓學(xué)生領(lǐng)會:如何應(yīng)用及哪類單調(diào)性問題該應(yīng)用“導(dǎo)數(shù)法”解決。
多媒體展示探究思考題。
在學(xué)生分組實(shí)驗(yàn)的過程中教師巡回觀察指導(dǎo)。 (課堂實(shí)錄) ,
(四)反思總結(jié),當(dāng)堂檢測。
教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進(jìn)行當(dāng)堂檢測。
設(shè)計意圖:引導(dǎo)學(xué)生構(gòu)建知識網(wǎng)絡(luò)并對所學(xué)內(nèi)容進(jìn)行簡單的反饋糾正。(課堂實(shí)錄)
(五)發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)。
設(shè)計意圖:布置下節(jié)課的預(yù)習(xí)作業(yè),并對本節(jié)課鞏固提高。教師課后及時批閱本節(jié)的延伸拓展訓(xùn)練。
九、板書設(shè)計
例1.求函數(shù)y=3x2-3x的單調(diào)區(qū)間。
變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。
變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。
變式3:求函數(shù) 的單調(diào)區(qū)間。
十、教學(xué)反思
本課的設(shè)計采用了課前下發(fā)預(yù)習(xí)學(xué)案,學(xué)生預(yù)習(xí)本節(jié)內(nèi)容,找出自己迷惑的地方。課堂上師生主要解決重點(diǎn)、難點(diǎn)、疑點(diǎn)、考點(diǎn)、探究點(diǎn)以及學(xué)生學(xué)習(xí)過程中易忘、易混點(diǎn)等,最后進(jìn)行當(dāng)堂檢測,課后進(jìn)行延伸拓展,以達(dá)到提高課堂效率的目的。
在后面的教學(xué)過程中會繼續(xù)研究本節(jié)課,爭取設(shè)計的更科學(xué),更有利于學(xué)生的學(xué)習(xí),也希望大家提出寶貴意見,共同完善,共同進(jìn)步!
高二導(dǎo)數(shù)教案 5
一、教學(xué)目標(biāo)
1. 知識與技能目標(biāo)
理解導(dǎo)數(shù)的概念,掌握導(dǎo)數(shù)的定義式及幾何意義。
能根據(jù)導(dǎo)數(shù)的定義求函數(shù)在某一點(diǎn)處的導(dǎo)數(shù)。
2. 過程與方法目標(biāo)
通過實(shí)例分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,體會極限思想。
培養(yǎng)學(xué)生觀察、分析、歸納和抽象思維能力。
3. 情感態(tài)度與價值觀目標(biāo)
感受數(shù)學(xué)知識的嚴(yán)謹(jǐn)性和科學(xué)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
體會導(dǎo)數(shù)在實(shí)際生活中的廣泛應(yīng)用,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識。
二、教學(xué)重難點(diǎn)
1. 重點(diǎn)
導(dǎo)數(shù)的概念及定義式。
函數(shù)在某一點(diǎn)處導(dǎo)數(shù)的求解。
2. 難點(diǎn)
對導(dǎo)數(shù)概念中極限思想的'理解。
導(dǎo)數(shù)幾何意義的直觀理解。
三、教學(xué)方法
講授法、啟發(fā)式教學(xué)法、討論法相結(jié)合
四、教學(xué)過程
1. 引入新課
展示兩個物體運(yùn)動的位移 - 時間圖像,一個是勻速直線運(yùn)動,一個是變速直線運(yùn)動。讓學(xué)生思考如何描述變速運(yùn)動在某一時刻的瞬時速度。
提出問題:在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度 h(單位:m)與起跳后的時間 t(單位:s)存在函數(shù)關(guān)系 h(t)=-4.9t+6.5t+10,如何求運(yùn)動員在 t = 2s 時的瞬時速度?
2. 新課講授
平均變化率回顧
對于函數(shù) y = f(x),在區(qū)間[x, x]上的平均變化率為:Δ y/Δ x=f(x)-f(x)/x - x
瞬時變化率與導(dǎo)數(shù)的概念
以高臺跳水問題為例,當(dāng)時間 t 從 2 變到 2 + Δt 時,高度的平均變化率為:
Δ h/Δ t=h(2+Δ t)-h(2)/Δ t
=-4.9(2+Δ t) + 6.5(2+Δ t)+10 - (-4.9×2 + 6.5×2 + 10)/Δ t
展開并化簡可得:Δ h/Δ t=-13.1 - 4.9Δ t
當(dāng) Δt 趨近于 0 時,平均變化率趨近于一個確定的值,這個值就是函數(shù)在 t = 2 處的瞬時變化率,即導(dǎo)數(shù)。
給出導(dǎo)數(shù)的定義:函數(shù) y = f(x) 在 x = x 處的導(dǎo)數(shù) f(x) 定義為:f(x)=lim{Δ x→0}Δ y/Δ x=lim{Δ x→0}f(x+Δ x)-f(x)/Δ x
導(dǎo)數(shù)的幾何意義
畫出函數(shù) y = f(x) 的圖像,在圖像上取一點(diǎn) P(x, f(x)),過點(diǎn) P 作曲線的切線。
說明函數(shù)在點(diǎn) x 處的導(dǎo)數(shù) f(x) 就是曲線 y = f(x) 在點(diǎn) P 處的切線斜率。
3. 例題講解
例 1:求函數(shù) y = x 在 x = 1 處的導(dǎo)數(shù)。
解:根據(jù)導(dǎo)數(shù)定義,f(1)=lim{Δ x→0}(1+Δ x) - 1/Δ x
=lim{Δ x→0}1 + 2Δ x+Δ x - 1/Δ x=lim{Δ x→0}(2+Δ x)=2
例 2:已知函數(shù) f(x)=3x + 2,求 f(x) 及 f(2)。
解:f(x)=lim{Δ x→0}f(x+Δ x)-f(x)/Δ x=lim{Δ x→0}[3(x+Δ x)+2]-(3x+2)/Δ x=lim{Δ x→0}3Δ x/Δ x=3
所以 f(2)=3
4. 課堂練習(xí)
求函數(shù) y = 3x - 2x 在 x = 0 處的導(dǎo)數(shù)。
已知函數(shù) g(x)=\sqrt{x},求 g(4)。
5. 課堂小結(jié)
導(dǎo)數(shù)的概念:函數(shù)在某一點(diǎn)處的瞬時變化率,用極限來定義。
導(dǎo)數(shù)的幾何意義:曲線在某一點(diǎn)處切線的斜率。
求導(dǎo)數(shù)的方法:根據(jù)導(dǎo)數(shù)定義式進(jìn)行計算。
6. 布置作業(yè)
教材上相關(guān)練習(xí)題若干。
思考:導(dǎo)數(shù)在物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域還有哪些應(yīng)用?
高二導(dǎo)數(shù)教案 6
一、教學(xué)目標(biāo)
1. 知識與技能目標(biāo)
熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則。
能夠運(yùn)用導(dǎo)數(shù)公式和運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù)。
2. 過程與方法目標(biāo)
通過對導(dǎo)數(shù)公式和運(yùn)算法則的推導(dǎo)過程,培養(yǎng)學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力。
經(jīng)歷運(yùn)用導(dǎo)數(shù)解決實(shí)際問題的過程,提高學(xué)生分析問題和解決問題的能力。
3. 情感態(tài)度與價值觀目標(biāo)
讓學(xué)生在探索導(dǎo)數(shù)運(yùn)算的過程中,體會數(shù)學(xué)知識的內(nèi)在聯(lián)系和系統(tǒng)性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和簡潔美。
培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的`精神。
二、教學(xué)重難點(diǎn)
1. 重點(diǎn)
基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的四則運(yùn)算法則。
利用公式和法則求函數(shù)的導(dǎo)數(shù)。
2. 難點(diǎn)
導(dǎo)數(shù)運(yùn)算法則的推導(dǎo)過程及靈活運(yùn)用。
三、教學(xué)方法
講授法、練習(xí)法、小組討論法
四、教學(xué)過程
1. 復(fù)習(xí)引入
回顧導(dǎo)數(shù)的概念及上節(jié)課所學(xué)的簡單函數(shù)在某一點(diǎn)處導(dǎo)數(shù)的求法。
提問:對于較為復(fù)雜的函數(shù),如 y = x + 2x - 3x + 1,如何快速求其導(dǎo)數(shù)呢?引出本節(jié)課要學(xué)習(xí)的導(dǎo)數(shù)公式和運(yùn)算法則。
2. 新課講授
基本初等函數(shù)的導(dǎo)數(shù)公式
展示并推導(dǎo)以下公式:
(x^n) = nx^(n - 1)(n 為實(shí)數(shù)),(sinx) = cosx,(cosx) = -sinx,(e^x) = e^x,(lnx)=1/x等
導(dǎo)數(shù)的四則運(yùn)算法則
加法法則:(u+v) = u+v
減法法則:(u-v) = u-v
乘法法則:(uv) = uv + uv
除法法則:(u/v})=uv - uv/v(v≠0)
通過具體函數(shù)的求導(dǎo),如 y = xsinx,利用乘法法則進(jìn)行推導(dǎo),幫助學(xué)生理解法則的運(yùn)用。
3. 例題講解
例 1:求下列函數(shù)的導(dǎo)數(shù):
y = 5x - 2x + 3x - 1
解:根據(jù)加法法則和公式(x^n) = nx^(n - 1),y = 15x - 4x + 3
y=sinx/x
解:利用除法法則,y=cosx·x - sinx·1/x=xcosx - sinx/x
例 2:已知函數(shù) f(x)=xe^x,求 f(x)。
解:根據(jù)乘法法則,f(x)=(x)e^x+x(e^x) = 2xe^x+xe^x=(x+2x)e^x
4. 課堂練習(xí)
求函數(shù) y = 3cosx - 2lnx 的導(dǎo)數(shù)。
已知函數(shù) g(x)=x/x+1,求 g(x)。
5. 課堂小結(jié)
總結(jié)基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則。
強(qiáng)調(diào)在求導(dǎo)過程中要正確運(yùn)用法則和公式,注意函數(shù)的形式和運(yùn)算順序。
6. 布置作業(yè)
完成教材上相關(guān)習(xí)題,包括求導(dǎo)運(yùn)算及簡單的應(yīng)用問題。
拓展作業(yè):尋找生活中可以用導(dǎo)數(shù)運(yùn)算解決的實(shí)際問題,并嘗試建立數(shù)學(xué)模型求解。
【高二導(dǎo)數(shù)教案】相關(guān)文章:
高二語文教案03-25
高二語文雷雨(節(jié)選)教案04-24
高二語文上冊勸學(xué)教案09-28
高二語文《望海潮》教案06-19
高二語文《書憤》教案12-20
高二語文《看社戲》教案09-29
高二語文宇宙的邊疆教案01-26
高二語文《宇宙的邊疆》教案12-17
高二足球教案(通用12篇)05-02
高二語文《雷雨》教案(精選11篇)03-15