數學與猜想優秀讀后感
讀完《數學與猜想》后,我明白 猜想是可貴的,它既是一種創造性的思維方式,也是一種良好的心理品質。因此,應積極主張達成兩者之間的合作和統一。
猜想是人們的一種重要思維活動,它是在已有知識和事實的基礎上,對未知的事物及其規律做出某種假定或提出預測的看法。牛頓看到蘋果落地,猜想出萬有引力;門捷列夫根據化學元素數量的不斷增多,認為元素的質量和化學性質之間一定存在著某種聯系,猜想出元素周期律;魏格納在觀察地圖時,猜想出大陸漂移說……日內瓦大學做過一個調查,發現眾多科學家都是受到突然的啟示,從猜想中得到幫助。從這個角度講,也可以說,科學史是一部“猜想史”。
猜想不必真。因為直覺思維并不排斥邏輯思維,猜想出的結論是否正確,需要通過實踐的驗證或邏輯的論證才能確定。科學史證明,每一個偉大的科學猜想,都是經過一個曲折、反復、長期的試驗、實踐或考察的研究過程才成為科學。古希臘科學家亞里士多德關于自由落體理論的猜想統治了兩千多年,但最終被意大利科學家伽利略否定。而英國人F·格思里提出的“四色猜想”,至今對于四色猜想是否解答了,數學家們的意見還是莫衷一是。
猜想是科學。科學猜想并非是憑空臆構、胡思亂想。猜想是為了對一定的經驗事實引出理解,是以知識為基礎的。
猜想能激發學習興趣,有利于提高教學效率
正如我們所知,猜想具有跳躍性,它不需要有充足的理由,對事物的認識可以忽略細節,可以跨越常規思維的若干小步進程,徑直地得出結論。應該說,這符合學生生活中的思維習慣。如果教師恰當地加以引導猜想,能激發學生濃厚的學習興趣,調動學生原有的知識和經驗去探索新知識。
猜想有利于培養學生在學習中的的創新能力和開拓精神
中國在世界數學領域中有很多了不起的地方,如數學家陳景潤在數論方面獨領風騷,為國爭了光。但有人說:“陳景潤研究哥德巴-赫猜想是厲害,而生于十七世紀的哥德巴-赫(1690~1764)則更厲害。”因此,在教學中,教師要經常善于引導學生大膽提出猜想或假說,一定會收到意想不到的效果。
大自然往往把一些深刻的東西隱藏起來,只讓人們見到表面或局部的現象,有時甚至只給一點暗示,只能從中得到部分的不完全的信息。善于猜測的人,僅憑借于部分的消息,加上經驗、學識和想像,居然可以找出問題正確或近于正確的答案,使人不能不承認,這是一種才華的表現。大自然是一部巨大的謎書,這些謎是永遠猜不完的,猜出得越多,涌現的新謎也就越多。科學家的任務是要發現自然之謎(相當于制謎)和猜出自然之謎,第一,用類比法培養學生的猜想能力。這是把某一或幾個方面彼此一致的新舊事物放在一起相比較,讓學生由舊事物的已知屬性去猜測新事物也具有相同或類似屬性的一種方法。在數學領域中,用這種方法常可由對象條件的相似去猜想結論的相似,由問題形式的.相似去猜想求解方法的相似。如將分數與除法相類比,學生可猜想出分數的基本性質;將推導圓柱體積公式與推導圓面積公式相類比,學生可猜想出推導圓柱體積公式也可用“割補法”。
第三,用分析法培養學生的猜想能力。這是“由果測因”的猜想方式,即從問題的結論出發,逆推而回,去猜測其成立的條件。在數學教學中,常用這種猜想去探求解題的思路。例如這樣一道思考題:已知扇形的半徑是6厘米,如下圖所示,求陰影部分面積。
通過觀察不難得出,求圖1中陰影部分的面積,也就是求圖2中陰影部分面積的一半,而圖2中陰影部分面積即為圓面積的四分之一減去等腰直角三角形AOB的面積。這樣分析后,問題也就一目了然了。
第四,用直觀法培養學生的猜想能力。這種方式可通過實驗、演示推測出結論。如教學“射線與角”這個內容時,大多數學生對“角的大小與兩邊長短無關”很難理解,可讓學生通過動手操作,猜想出結論。如下圖所示,一個直角的兩邊雖說增長了,但直角還是直角,沒有變化,由此可推出“角的大小與兩邊長短無關”。
猜想是可貴的,它既是一種創造性的思維方式,也是一種良好的心理品質。在數學中,如果能正確運用,效果一定很理想。
【數學與猜想優秀讀后感】相關文章:
《老人與海》優秀讀后感04-25
父與子讀后感優秀3篇03-16
敬業與樂業優秀教案10-24
關于元曲與數學的聯系02-19
愛與自由讀后感04-22
《黑客與畫家》讀后感01-19
《人與永恒》讀后感08-21
《李白與杜甫》讀后感10-26
敬業與樂業優秀教學設計10-24
《敬業與樂業》優秀課文賞析01-17